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The thin-Debye-layer model is utilized to analyse the electro-hydrodynamic flow about
a colloidal particle which is exposed to a direct ionic current, emitted by a proximate
reactive electrode. This flow is driven by electro-osmotic slip on the particle, as well
as a comparable slip on the electrode itself. The small particle–electrode separation
allows for the use of singular perturbation. Thus, the electro-neutral bulk-fluid domain
is decomposed into an ‘inner’ gap region, where the electric field and shear rate are
large, and an ‘outer’ region, consisting of the remaining bulk domain, where they are
moderate. Matched asymptotic expansions in both regions provide the requisite flow
field. The intensive shear rate in the narrow gap region is associated with a lubrication-
type pressure build-up, which is responsible for the leading-order hydrodynamic force
on the particle. This force acts to repel the particle away from the electrode, thereby
supporting it against gravity. Its magnitude is inversely proportional to the gap width.
At large distances from the particle the fluid velocity decays with the third power of
distance, while near the electrode it decays with the fourth power. The inward pointing
flow near the electrode tend to entrain neighbouring particles, thereby resulting in two-
dimensional particle clusters. For equal values of particle and anode zeta potentials,
this process is dominated by the particle-slip contribution.

1. Introduction
This paper is motivated by the observed interaction between colloidal particles

that are electro-phoretically deposited on a planar electrode. After reaching the
neighbourhood of the electrode, the initially dispersed particles appear to attract
each other and to form two-dimensional crystalline aggregates (Böhmer 1996; Trau,
Saville & Aksay 1996). This mode of guided self-assembly can be exploited for
the fabrication of various nanostructured devices (Wong & Searson 1999), such
as bio-sensors (Velev & Kaler 1999) and photonic crystals (Lumsdon et al. 2003).
Accordingly, there is a significant practical interest in the aggregation dynamics. From
a fundamental point of view, the clustering phenomenon presents a curious physical
problem: Naively, the observed particle–particle attraction may appear surprising in
view of the expected electrostatic repulsion between the identically charged particles.
In reality, of course, the (usually negative) particle charge is screened by a thin diffuse
layer, forming the electric double layer (Russel, Saville & Schowalter 1989). This
suggests that the attraction mechanism is driven by electrokinetic effects (Böhmer
1996). Thus, the particles are entrained in an attractive fluid motion generated by
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their neighbours. This effective attraction is arrested at short particle separation
by repulsive dipole–dipole interactions (Gong & Marr 2001; Nadal et al. 2002),
eventually resulting in the observed two-dimensional aggregates.

At the beginning of the aggregation process, the particles are well separated. Thus,
an initial step in understanding particle interaction involves the study of the flow field
which is caused by the interaction of a single particle with a proximate electrode. Once
this flow field (and, specifically, its far-field behaviour) is reasonably understood, one
can calculate the respective drift of a nearby ‘test’ particle using the existing models
of particle mobility in the presence of walls (Goldman, Cox & Brenner 1967). The
main interest therefore lies in the velocity distribution near the electrode, which is
presumably the origin of inter-particle attraction.

1.1. The electro-hydrodynamic and electro-osmotic mechanisms

Two different electrokinetic mechanisms were actually proposed at about the same
time. The ‘electro-osmotic’ mechanism, originally suggested by Böhmer (1996), is due
to the flow which is engendered by the action of the electric field upon the diffuse
layer which surrounds the particle. For the usual case of a negative particle zeta
potential (positively charge diffuse layer), this mechanism predicts particle attraction
near the anode. The ‘electro-hydrodynamic’ mechanism, on the other hand, is due
to the flow driven by the action of the electric field upon the charged diffuse layer
(‘polarization layer’) adjacent to the electrode itself. Since that layer is generated by
the field, the electro-hydrodynamic mechanism is invariant to the electrodes polarity
(for weakly applied voltage, for example, the flow magnitude is quadratic in the
field). Thus, it generally predicts a velocity field along the electrode which is directed
toward the particle, thereby resulting in particle–particle attraction. Another electro-
hydrodynamic mechanism (Trau, Saville & Aksay 1997) is based upon the action of
the electric field upon unbalanced charge outside the Debye layer. This mechanism
was discussed in detail by Sides (2001).

The electro-osmotic mechanism accounts for many of the observed phenomena,
and especially for aggregates disintegration at reversed electrode polarity under direct
current (DC) conditions (Böhmer 1996). Being linear in the applied field, however,
the electro-osmotic mechanism cannot explain alternating current (AC) aggregation.
Recent experimental findings (Fagan, Sides & Prieve 2002), the most striking being
the independence of the aggregation velocity upon the particle zeta potential (Kim
et al. 2002a ,b), indicate that the electro-osmotic mechanism alone may be insufficient
to explain the clustering phenomena.

The electro-hydrodynamic mechanism, on the other hand, can explain particle
attraction in both DC and AC conditions. Indeed, the early models of this
mechanism (Sides 2001, 2003) are consistent with earlier AC experiments (Kim et al.
2002a). The existence of electro-hydrodynamic flow was later confirmed in kinetic
experiments (Ristenpart, Aksay & Saville 2004). While there is no disagreement
about the importance of the electro-hydrodynamic mechanism at high frequencies,
the importance of this mechanism at low frequencies and at DC conditions is under
debate (Solomentsev et al. 2000; Fagan, Sides & Prieve 2006)

Regardless of the assumed mechanism, prevailing analyses of this electrokinetic
problem tend to consider a rather universal model geometry. Thus, a typical
configuration comprises of a colloidal particle (radius a) which is suspended between
two parallel planar electrode (spacing h) at distance aδ from the lower one (in DC
models this is the anode). In typical experiments, h on the order of millimetres and
a on the order of microns (see table 1). It is therefore common to focus upon the
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Electrochemical cell width h 6 mm (see e.g. Solomentsev et al. 1997)
Particle radius a 10 μm (see e.g. Solomentsev et al. 1997)
Particle–wall separation aδ 100 nm (see e.g. Fagan et al. 2002)
Debye thickness λ 20 nm (see e.g. ristenpart et al. 2007a)

Table 1. Typical experimental values.

interaction of the particle with a single electrode, the other electrode being effectively
replaced by a consistent far-field condition (see (2.7)). This transformation allows for
the use of convenient analytical methods, such as bipolar coordinates (Solomentsev,
Böhmer & Anderson 1997; Sides 2001), which naturally apply for the semi-infinite
fluid domain.

1.2. The thin-Debye-layer limit

A key improvement of the modelling methods, pioneered by Solomentsev et al.
(1997), exploited the smallness of the Debye layer thickness. Thus, the Debye layers
on both the particle the electrode are effectively replaced by equivalent boundary
conditions, which eliminate the need to solve the entire electrokinetic equations.
These conditions consist of the Helmholtz–Smoluchowski slip formula (see (2.2)), as
well as an appropriate condition for the electric field.

When considering a chemically inert particle, the impermeability of the particle to
ionic current is reflected by a no-flux condition (Keh & Anderson 1985; Yariv 2010).
On the reactive electrode, however, the choice of appropriate boundary condition
has resulted in some controversy. Original investigations of the particle–electrode
interaction employed a constant potential boundary condition (Reed & Morrison
1976; Keh & Anderson 1985; Keh & Lien 1989; Loewenberg & Davis 1995;
Solomentsev et al. 1997). Since this condition does not allow for electrokinetic slip on
the electrode, it rules out the electro-hydrodynamic mechanism. It was later realized
(Fagan, Sides & Prieve 2004) that the constant potential condition is applicable on the
Debye layer scale, but is inappropriate for a coarse-grained bulk description in a thin-
Debye-layer limit. The first thin-Debye-layer model of a reactive electrode appears
to be that of Fagan et al. (2004), who considered the case of low AC frequencies,
wherein Faradaic reactions occur at the electrodes. Rather than using a constant
potential condition, the authors postulated a constant reaction rate at the electrode.

In the DC case, this simplifying methodology was continued by Ristenpart, Aksay &
Saville (2007a). These authors extended their analysis beyond any specific kinetic
model by assuming a prescribed current density on the reactive electrodes. (This
condition constitutes the natural counterpart of the familiar no-flux condition on inert
surfaces.) Thus, while the current density depends upon the applied voltage through
the electrodes kinetics, the approach of Ristenpart et al. (2007a) consists of ignoring
the electrochemical details and focusing upon the hydrodynamics. Using the ensuing
non-homogeneous Neumann condition, Ristenpart et al. (2007a) managed to obtain
a semi-analytical solution of the electric field as an eigenfunction series in bi-polar
coordinates. In a companion paper (Ristenpart, Aksay & Saville 2007b) the same au-
thors addressed the high-frequency AC case, in the absence of any Faradaic reactions.

1.3. The near-contact limit

A common feature in the observed phenomenon is the small gap separating the
particle from the electrode. In the height-tracking experiments of Fagan et al. (2002),
for example, the 6.2 μm diameter particles were observed at distances of order 0.1 μm
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from the electrode (see table 1). Consequently, numerical solutions of the theoretical
models (Solomentsev et al. 1997, 2000; Sides 2003; Fagan et al. 2004; Ristenpart et al.
2007a ,b) consistently employed small numerical values of δ, e.g. 0.04 in Ristenpart
et al. (2007a) and 0.01 in Ristenpart et al. (2007b). These figures represent separations
that are small compared with particle size, yet large relative to the Debye thickness,
λ � aδ � a. This scale disparity allows for the use of the thin-Debye-layer models
even for these small separations. Surprisingly, it appears that none of the many
existing models has directly exploited the smallness of δ to obtain an asymptotic
approximation for the flow field. Indeed, it appears that the only direct use of the
small-δ values was made by Solomentsev et al. (2000) who employed the well-known
asymptotic model for near-contact wall hindrance.

The goal of the present paper is to present an asymptotic analysis for the near-
contact limit δ � 1. In contrast to the comparable numerical solutions, this analysis
provides closed-form expressions for the electric and flows fields, and, specifically, for
the flow distribution along the electrode. Extracting to large distances away from the
particle, this distribution is utilized to calculate the drift of a neighbouring particle
which is entrained in that flow. Thus, the present analysis clarifies the relative role of
the electro-hydrodynamic mechanism in DC aggregation, thereby aiding in resolving
a long-standing dispute. An additional important benefit of the asymptotic solution is
in providing a physical explanation for the lubrication-type support that is required to
balance the particle against gravity. As will become evident here, this support arises
from the large pressure in the gap region.

The paper is arranged as follows: the next section provides the thin-Debye-layer
formulation and presents the near-contact limit, whereby inner–outer asymptotic
expansions are utilized for analysing the problem separately in the gap region and in
the remaining fluid domain. Section 3 presents the calculation of the electric field in
both regions, thereby allowing for the evaluation of the slip-driven velocity field. The
electro-hydrodynamic flow associated with the electrode diffuse layer is calculated in
§ 4, and the electro-osmotic flow associated with the particle diffuse layer is calculated
in § 5. The predictions of the present theory for particle–particle interactions and the
hydrodynamic force experienced by the particle are provided in § 6. The results are
discussed in § 7.

2. Problem formulation
2.1. Model

Consider an electrochemical cell consisting of two planar electrodes separated by
distance h (see figure 1). The space between the electrodes is filled with an electrolyte
solution (permittivity ε, viscosity μ). For simplicity, a symmetric solution (cation
valency Z , anion valency −Z ) is assumed, so when undisturbed both ionic species
possess identical ionic concentration, say n∞. As in Ristenpart et al. (2007a), the focus
here is on the case of a DC which is generated by electrochemical reactions that take
place on the electrode-electrolyte interfaces. Following Ristenpart et al. (2007a), these
reactions are modelled by a prescribed current density, flowing out of the anode.

It is instructive to consider first the transport process in the absence of a particle.
Then, the system is one-dimensional, whereby charge conservation implies that the
current density I must be uniform in the entire cell. Despite the passage of this ionic
current through the cell, the electrolyte remains electro-neutral to leading order. Neg-
lecting the effect of concentration polarization (Rubinstein & Zaltzman 2001), which
is expected to be secondary in the electrode neighbourhood, this electro-neutrality
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Figure 1. Schematic of the electrodes–particle system, showing the oppositely charged diffuse
layers near the electrodes. In the thin-Debye-layer limit λ/a → 0, the Debye layer adjacent to
the anode is assumed to be quantified by a zeta potential ζ and a uniform Faraday current
density I .

implies that both ionic concentrations are equal to n∞, whereby the electrolyte behaves
as an Ohmic conductor of a uniform conductivity, say σ . Thus, for example, if both
ionic species possess the same diffusivity D,

σ =
2e2Z 2n∞D

kT
, (2.1)

wherein kT denotes Boltzmann’s factor and e the elementary charge.
Electro-neutrality is violated only in the diffuse layers adjacent to the two electrodes.

Since the Debye layer thickness λ is on the order of nanometres in most practical
scenarios, both diffuse layers can be modelled using the thin-Debye-layer limit. Thus,
for instance, the anode is quantified by a positive zeta potential, say ζ , representing
the voltage across the negative Debye cloud surrounding it. The values of I and ζ

are (in general nonlinear) functions of the imposed voltage, the electrode kinetics,
and the cell separation h (Bazant, Chu & Bayly 2005). In principle, these functions
can be obtained for any electrode kinetic model; in the case of transport through
ideal ion-selective membranes, for example, the current increases monotonically as
the hyperbolic tangent of V , exponentially approaching a saturation plateau (Levich
1962).

Consider now the effect of a stationary colloidal particle of radius a which is
suspended at distance aδ from the anode. In view of the particle impermeability to
ions, the preceding one-dimensional solution is no longer valid, and it is necessary
to analyse the spatial transport problem. The smallness of a compared with h allows
for representing the remote cathode by an equivalent far-field condition (see (2.7)).
Within the thin-Debye-layer limit (Keh & Anderson 1985; Yariv 2010), the particle
boundary is represented by a current-impermeability boundary condition, implying
that the current distribution is modified and is no longer one-dimensional. (At large
zeta potentials, comparable to the thermal voltage, this no-flux condition needs to
be corrected so as to account for the emergence of surface current (Dukhin 1965;
O’Brien 1983). Since the goal here is to employ the simplest model which exhibits all
the essential electrokinetics features, the conventional no-flux condition is employed.
This is the only place where the present thin-Debye-layer model departs from that of
Ristenpart et al. (2007a).)
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It is important to emphasize that consistent use of the thin-Debye-layer limit implies
now that the asymptotic condition λ � h is replaced by the stricter condition λ � aδ.
This assumption is justified by the existing length disparities in realistic systems (see
table 1). Thus, all pertinent fields are sought in the electro-neutral bulk domain,
external to the Debye layers surrounding both the particle and the electrodes. This
bulk behaves approximately as an Ohmic conductor, wherein the (now non-uniform)
current density is related to the electric field through the scalar conductivity σ . Within
the thin-Debye-layer limit, this field results in the Helmholtz–Smoluchowski velocity
slip,

slip = − ε

μ
× electric field × zeta potential, (2.2)

over all charged surfaces in contact with the electrolyte. Consistently with the thin-
Debye-layer limit, the effective boundary condition apply at the outer edges E and
P of the diffuse layers that surround the electrode and particle, respectively. (At the
bulk scale, these surfaces coincide with the electrode surface and particle boundary.)

Thus, the introduction of an ion-impermeable particle into the system results in a
non-uniform electric current (and electric field) in the electro-neutral bulk. This field,
in turn, induces velocity slip on both the anode and the particle, the magnitude of
which is provided by (2.2). The usual assumption of a uniform (usually negative) zeta
potential ζP on the particle, as would be the case for a latex particle, is employed.

2.2. A simplified electrode representation

In the absence of a particle, both the current distribution on the electrode and the
electrode zeta potential are uniform. In principle, these two quantities depend upon
both the applied voltage across the cell, as well as the electrode kinetics (Bazant et al.
2005). Adopting the approach of Ristenpart et al. (2007a), both quantities are taken
as prescribed, thereby ignoring the electrochemical details.

When the particle is introduced into the cell, the transport process is no longer
one-dimensional, whereby the distributions of current and zeta potential on the
electrode may deviate from their original uniform values. Following Ristenpart et al.
(2007a), however, these deviations are neglected. Thus, the electrode is represented by a
uniform current density I and zeta potential ζ . The assumption of a uniform electrode
current is valid provided the Ohmic resistance in the bulk is small compared with
the electrochemical charge-transfer resistance at the electrode–electrolyte interface
(Newman 1973); this is indeed the case in typical experiments (Sides 2001). The
assumption of uniform zeta potential is justified if the characteristic electric potential
variations in the bulk fluid, of order aI/σ , are small compared with the kinetic-driven
voltage drop across the electrode Debye layer.

Both approximation may become somewhat crude as the particle approaches the
electrode, and especially in the near-contact limit considered here. Specifically, it
is anticipated that the intensification of electric field would result in induced-charge
effects, whereby the zeta potential may be significantly affected by the electric potential
distribution in the bulk (Bazant & Squires 2004; Squires & Bazant 2004).

A rigorous evaluation of the current density and zeta potential distributions requires
a careful asymptotic analysis, where these two macroscale quantities are calculated
form an exact microscale description. This problem was recently resolved for one-
dimensional transport (Bazant et al. 2005); its generalization to more complicated
geometries is discussed in § 7.



Electro-hydrodynamic particle levitation on electrodes 193

2.3. Electrostatics

The electrostatic problem is analysed using a dimensionless formulation, where the
spatial coordinates are normalized with a, the current density with I , the electric
potential with aI/σ and the electric field with I/σ . The Ohmic nature of the electro-
neutral bulk implies that the dimensionless current i and the dimensionless electric
field coincide; because of Maxwell–Faraday law, the latter is conservative, whence

i = −∇ϕ, (2.3)

where ϕ is the electric potential. Charge conservation then yields Laplace’s equation:

∇2ϕ = 0. (2.4)

The dimensionless boundary conditions are formulated using a cylindrical (ρ, �, z)
coordinate system, the z-axis passing through the particle centre and lying
perpendicular to the electrodes, in addition to spherical polar coordinates r and
θ (see figure 3). The prescribed uniform current density on the anode surface z = 0
appears as the Neumann-type boundary condition

∂ϕ

∂z
= −1 on E . (2.5)

Similarly, the particle impermeability to current is expressed via the no-flux condition

∂ϕ

∂n
= 0 on P, (2.6)

where ∂/∂n denotes differentiation along the outward normal to the particle boundary.
The remote cathode is represented by the far-field condition

∂ϕ

∂z
= −1 as z → ∞. (2.7)

Owing to the axial symmetry of the problem, ϕ is a function of ρ and z alone,
independent of the azimuthal angle � .

2.4. Flow

Since the flow is driven by the Smoluchowski slip condition (2.2), it is natural to
normalize the velocity field with the electrokinetic scale (see (2.1)):

U =
εζ I

σμ
. (2.8)

The pressure is normalized with μU /a. The dimensionless velocity v and pressure p

are governed by the continuity and Stokes equations,

∇ · v = 0, ∇p = ∇2v, (2.9)

together with the attenuation condition

v → 0 for z → ∞. (2.10)

In addition, the velocity field satisfies mass impermeability and electrokinetic slip on
the electrode surface:

v = ∇ϕ on E , (2.11)

and on the particle boundary:

v = χ∇ϕ on P . (2.12)
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Here,

χ = ζP /ζ (2.13)

is the ratio of particle to electrode zeta potentials.
In view of the linearity of the hydrodynamic problem, it is convenient to decompose

the velocity field in the form

v = u + χ ũ, (2.14)

the pressure field is similarly decomposed to p + χp̃. Hereafter, the flow fields (u, p)
and (ũ, p̃) are respectively referred to as the ‘electro-hydrodynamic’ and ‘electro-
osmotic’ components. Both fields independently satisfy the continuity and Stokes
equations (2.9) as well as the decay condition (2.10). The field u, which represents the
motion due to the electrode slip, vanishes on P and satisfies

u = ∇ϕ on E , (2.15)

while the field ũ, which represents the motion due to the particle slip, vanishes on E
and satisfies

ũ = ∇ϕ on P . (2.16)

In view of the prevailing axial symmetry, u comprises only of radial (u) and axial
(w) components when written in cylindrical coordinates:

u = êρu + êzw (2.17)

wherein êρ and êz are unit vectors in the directions of increasing ρ and z, respectively.
These two components, moreover, are functions of ρ and z alone, independent of � .
That symmetry allows to express these components in terms on a stream function ψ:

u =
1

ρ

∂ψ

∂z
, w = − 1

ρ

∂ψ

∂ρ
, (2.18)

whereby the continuity equation is automatically satisfied. A similar representation
also applies for ũ = êρũ + êzw̃, wherein both ũ and w̃ can be derived from a stream
function ψ̃ using relations of the form (2.18).

2.5. The near-contact limit

The focus here is in the prevailing case where the particle–electrode gap is narrow,
δ � 1. This singular limit is handled by decomposing the fluid domain into two
complementary regions: an ‘inner’ gap region, where the electric field and shear rate
are presumably intensive, and the ‘outer’ region, consisting of the remaining fluid
domain, where they are moderate. The gap region is analysed using the standard
lubrication variable stretching (Keller 1963):

z = δZ, ρ = δ1/2R, (2.19)

whereby the lower particle hemisphere appears as

Z ∼ H0(R) + δH1(R) + · · · = H (R; δ) (2.20)

with

H0(R) = 1 +
1

2
R2. (2.21)

In the outer region, the limit δ → 0 corresponds at leading order to a unit sphere
in contact with planar wall. This geometry is naturally resolved using tangent-sphere
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coordinates (ξ, �, η) (Jeffrey 1978; Sides & Tobias 1980):

ρ =
2η

ξ 2 + η2
, z =

2ξ

ξ 2 + η2
, (2.22)

in which the spheres ξ = constant are centreed about the point ξ−1 êz and are
tangential to the z = 0 plane. In terms of these coordinates the wall is located at
ξ = 0, whereas the sphere surface is given to leading order by ξ = 1.

3. Electric field
The electrokinetic problem is semicoupled: while the hydrodynamic problem

depends upon the electric flow trough the slip conditions (2.11)–(2.12), the electrostatic
problem can be analysed independently. This section is devoted to the calculation of
the electric field in both the inner and outer regions.

3.1. Inner region

In terms of the inner variables, Laplace’s equation adopts the form

∂2ϕ

∂Z2
+ δ

(
∂2ϕ

∂R2
+

1

R

∂ϕ

∂R

)
= 0; (3.1)

the Faraday current condition (2.5) on E appears as

∂ϕ

∂Z
= −δ on Z = 0, (3.2)

and the no-flux condition (2.6) on P is given by

∂ϕ

∂Z
= δ

dH

dR

∂ϕ

∂R
at Z = H. (3.3)

For δ � 1 is is natural to seek a solution in the form of an asymptotic expansion

ϕ(R, Z; δ) ∼ f0(δ)ϕ0(R, Z) + f1(δ)ϕ1(R, Z) + · · · , (3.4)

wherein fi(δ) is an asymptotic sequence:

fi+1(δ) � fi(δ), δ → 0. (3.5)

Specifically, in view of the structure (3.1)–(3.3), it appears natural to choose

f0(δ) = 1, f1(δ) = δ, . . . . (3.6)

The leading-order balance yield ∂ϕ0/∂Z = 0, whence ϕ0 = ϕ0(R). (This result, in
conjunction with (3.6), implies an O(δ−1/2)-large radial current.). The function ϕ0 is
evaluated from the solvability condition of the O(δ) problem:

∂2ϕ1

∂Z2
= − 1

R

d

dR

(
R

dϕ0

dR

)
, (3.7)

∂ϕ1

∂Z
= −1 on Z = 0, (3.8)

∂ϕ1

∂Z
=

dH0

dR

dϕ0

dR
at Z = H0. (3.9)

Integration of (3.7) in conjunction with (3.8) yields

∂ϕ1

∂Z
= −1 − Z

R

d

dR

(
R

dϕ0

dR

)
. (3.10)
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The no-flux condition (3.9) then furnishes the equation:

H0

R

d

dR

(
R

dϕ0

dR

)
+ R

dϕ0

dR
+ 1 = 0. (3.11)

This is a first-order differential equation for dϕ0/dR whose solution is

dϕ0

dR
=

C0

RH0

− 1

R
, (3.12)

where C0 is a constant of integration. Preventing field singularity at R = 0 requires
that C0 = 1, whence

dϕ0

dR
= − R

2H0(R)
. (3.13)

This expression can also be obtained using integral charge conservation in a region
of radius R (cf. Jeffrey & Chen 1977): the current that enters this region from
the anode πδR2 must be balanced by a radial current, which to leading order is
−2πδRH0(R) dϕ0/dR. This yields (3.13). (At first sight, it may appear surprising that
the integral method automatically yields (3.12) with C0 = 1 without the need to
employ the regularity condition at R = 0. Note however that, for any C0 �= 1, (3.12)
comprises a singular current source term which is not accounted by the integral
balance.) In the present context, the direct method used herein is necessary as it
provides the boundary value problem governing ϕ1 which is required in subsequent
flow analysis (see (5.2)).

To conclude, the inner potential is

ϕ0 = D0 − 1

2
lnH0. (3.14)

The integration constant D0 is obtained by matching with the outer solution.

3.2. Outer field

Consider now the outer region. It is convenient here to decompose the potential as

ϕ = −z + φ, (3.15)

φ representing the modification to the uniform current due to the particle, decaying
at large distances (cf. (2.7)):

φ → 0 as ξ, η → 0. (3.16)

As such, φ satisfies Laplace’s equation, the homogeneous no-flux condition at the
wall (cf. (2.5))

∂φ

∂ξ
= 0 at ξ = 0 (3.17)

and an attenuation condition. Additionally, it satisfies a non-homogeneous boundary
condition on the sphere surface (cf. (2.6)):

∂ϕ

∂n
=

∂z

∂n
on P . (3.18)

The modification φ is expanded into the asymptotic series:

φ(ξ, η; δ) ∼ φ0(ξ, η) + δ φ1(ξ, η) + · · · . (3.19)

The leading-order term satisfies both Laplace’s equation and the homogeneous
condition (3.17). In addition, it satisfies the following non-homogeneous boundary
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condition on the sphere surface (cf. (3.18)):

∂φ0

∂ξ
= 2

η2 − 1

(η2 + 1)2
at ξ = 1. (3.20)

The axisymmetric solution of Laplace’s equation that satisfies (3.17)–(3.16) is
(Moon & Spencer 1988)

φ0 = (ξ 2 + η2)1/2

∫ ∞

0

A(s) cosh(ξs) J0(ηs) ds. (3.21)

Substitution into (3.20) in conjunction with the properties of the Hankel transforms
(Sneddon 1972) leads to the following first-order ordinary differential equation for
dA/ds:

s sinh s
d2A

ds2
+ (sinh s + 2s cosh s)

dA

ds
= −2(1 − 2s)e−s . (3.22)

Integration yields

dA

ds
=

4e2s(e−2s − 1 + s)

(e2s − 1)2
+

Ce2s

s(e2s − 1)2
. (3.23)

For small s, the first term ∼ −1/s while the second term ∼ C/4s3. Convergence of
(3.21) therefore requires C = 0. Another integration yields

A(s) = E − se−s

sinh s
− ln(1 − e−2s). (3.24)

Convergence of (3.21) therefore requires E = 0. (A different solution, appearing in
Jeffrey & Chen (1977) for a similar potential-flow problem, does not satisfy their
differential equation and is erroneous.) Note that at small s

A(s) ∼ − ln s − 1 − ln 2 + O(s). (3.25)

When approaching the gap region, as η → ∞, the main contribution to the integral
in (3.21) arises from the s = O(1/η) neighbourhood; use of (3.25) readily yields

φ0 ∼ ln η + γ − 1 + O(1/η), (3.26)

γ being Euler’s constant. Performing a 1–1 van Dyke matching (Van Dyke 1964)
reveals that the integration constant in the leading-order inner potential (3.14) is

D0 =
1

2
ln 2 + γ − 1. (3.27)

It also shows a switchback effect (Hinch 1991), whereby the inner expansion (3.4) is
modified to

ϕ(R, Z; δ) ∼ f−1(δ)ϕ−1(R, Z) + f0(δ)ϕ0(R, Z) + f1(δ)ϕ1(R, Z) + · · · , (3.28)

wherein

f−1(δ) = ln δ (3.29)

and ϕ−1 = −1/2. Since ϕ−1 is a constant, it is readily verified that the modification
(3.28) does not affect the validity of the preceding inner analysis.

It is worth noticing that the electric potential is defined to within an additive
constant, which is set here by (3.15)–(3.16). Thus, the constants of integration in
the inner solution are not arbitrary, but must rather be determined by matching
with the outer solution. In the thin-Debye-layer model of Ristenpart et al. (2007a)
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Figure 2. The electric potential at z = 0 as a function of ρ for δ = 0.001: outer approximation
φ0 (thick), inner approximation ϕ−1 ln δ+ϕ0 (dashed) and remote approximation π4/90ρ3 (thin).

the electrode zeta potential is assumed uniform, presumably unaffected by the bulk-
electric-potential variations at z = 0; then, the flow problem is only affected by the
local gradient of ϕ, thereby unaffected by both D0 and the switchback term. In a
more realistic model, however, the zeta potential would be affected by the actual
distribution of ϕ(z = 0) (see Yariv 2008).

The representation (3.21) enables the derivation of an asymptotic approximation
at large distances from the particle. Evaluating the integral in (3.21) for η, ξ � 1 and
reverting to outer variables reveals that φ0 is given by a quadrupole aligned in the z

direction. In spherical coordinates,

φ0 ∼ − π4

90

3 cos2 θ − 1

r3
. (3.30)

This approximation corresponds to an outward current near the electrode
(arccos(1/3) < θ < π/2) and an inward current near the symmetry axis (0 <

θ < arccos(1/3)). Note that the total current associated with (3.30) through any
hemisphere (r = const.) is zero, in agreement with the physical interpretation of φ as
a disturbance caused by the particle.

The electric potential distribution on the anode is portrayed in figure 2. The thick
line represents the leading-order outer approximation φ0, obtained using (3.21) and
(3.24). The thin line at large ρ values represents the remote approximation (3.30).
The dashed line at small ρ values represents the leading-order inner approximation,
− ln(δH0)/2. Following van Dyke (1964), the latter approximation comprises both the
logarithmic and O(1) terms in (3.28).

4. Flow due to electrode-animated slip
Having evaluated the electric field, it is now possible to calculate the electrokinetic

flow using the decomposition (2.14). The electro-hydrodynamic velocity field, due to
slip over the electrode Debye layer, is calculated first.

4.1. Inner region

Consider first the flow field in the gap. The slip condition (2.15) in conjunction with
(3.4) implies O(δ−1/2) radial velocities; the continuity equation in conjunction with
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mass impermeability at both the electrode and particle surface then implies w ∼ O(1).
Balancing the radial pressure gradient with the large viscous stresses associated with
the transverse variation of u shows that the pressure is O(δ−2). This suggests the
introduction of the lubrication scaling:

u = δ−1/2U, w = W, p = δ−2P. (4.1)

Consequently, it also useful to define

ψ = δΨ, (4.2)

wherein (cf. (2.18))

U =
1

R

∂Ψ

∂Z
, W = − 1

R

∂Ψ

∂R
. (4.3)

The scaling (4.1) is identical to that obtained by Cox & Brenner (1967) for the classical
Stokes problem of a sphere approaching a solid wall. In that problem, however, the
flow is driven by the O(1) axial velocity imposed by the sphere motion; in the present
case the flow is driven by the slip-driven O(δ−1/2) radial velocity.

Each of the fields U , W , P and Ψ is expanded in the form (3.4). At leading order,
the continuity equation appears as

∂W0

∂Z
+

1

R

∂

∂R
(RU0) = 0, (4.4)

while the radial and axial components of Stokes equation are

∂P0

∂R
=

∂2U0

∂Z2
,

∂P0

∂Z
= 0. (4.5)

The last equation implies that P0 is independent of Z, P0 = P0(R). The axial
component W0 vanishes on both Z = 0 and on the surface Z = H0(R); the radial
component U0 also vanishes on that surface, but on Z = 0 it satisfies the condition,

U0 =
dϕ0

dR
at Z = 0, (4.6)

representing the electro-hydrodynamic slip along the outer edge of the anode diffuse
layer.

Integrating the radial momentum balance in conjunction with the boundary
conditions governing U0 yields

U0 =
R

2H 2
0

(Z − H0) +
1

2

dP0

dR
Z(Z − H0). (4.7)

The first term represent an inward Couette-like radial flow, driven by electrode
slip; the second term represents Poiseuille-type radial flow that is required by mass
conservation (see figure 3).

With the available expression for U0, it is trivial to evaluate W0 from the continuity
equation (4.4). Applying the boundary condition at Z = 0 and Z = H0 results in the
following first-order differential equation for dP0/dR:

H 3
0

d

dR

(
R

dP0

dR

)
+ 3H 2

0 R2 dP0

dR
= −6R. (4.8)

The left-hand side of (4.8) is the derivative of H 3R dP0/dR; integration yields

dP0

dR
= −3

R

H 3
0

+
E0

RH 3
0

, (4.9)
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Figure 3. A description of the cylindrical and spherical coordinates systems. Also depicted
is the electro-hydrodynamic flow field in the gap. The Couette and Poiseuille velocity profiles
respectively correspond to the first and second terms in (4.7).

where E0 is a constant of integration. The second term results in a logarithmic
singularity of P near R = 0 and is therefore rejected, whence E0 = 0. A second
integration yields

P0 =
3

2H 2
0

. (4.10)

The constant of integration in the above expression was set to zero in view of the
required matching with the O(1) pressure in the outer region.

Thus, the outward Poiseuillian flow, which is induced by mass conservation, is
accompanied by large pressure buildup in the gap. Note that this mechanism is
independent of the electrode polarity: at the cathode, the electric current inflow is
accompanied by large inward radial current, namely the opposite of (3.13). The zeta
potential, however, is then negative, and the animating slip is again in the inward
radial direction.

The inner flow calculation is summarized by presenting the leading-order stream
function, obtained from (4.3), (4.7) and (4.9):

Ψ0 = −R2Z(H0 − Z)2

2H 3
0

. (4.11)

4.2. Outer region

Consider now the electro-hydrodynamic flow in the outer region. The respective
stream function ψ (defined by (2.18)) is governed by the Stokes equation

(
∂2

∂ρ2
− 1

ρ

∂

∂ρ
+

∂2

∂z2

)2

ψ = 0, (4.12)
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the impermeability and slip conditions on the electrode

ψ = 0,
1

ρ

∂ψ

∂z
=

∂φ

∂ρ
at z = 0, (4.13)

together with the impermeability and no-slip conditions on the particle boundary P ,
which imply that both ψ and its normal derivative vanish there. (The requirement of
vanishing tangential derivative on P necessitates that ψ is a constant on that surface.
Because of flow regularity, moreover, ∂ψ/∂z vanishes on the symmetry axis ρ = 0.
Thus, ψ must possess the same value on both E and P .) In addition, the far-field
behaviour must comply with velocity decay at infinity, whence ψ/r2 → 0 there.

It is natural to employ an expansion of the form (3.19) and solve for the leading-
order term ψ0 which satisfies the impermeability and slip conditions on the electrode

ψ0 = 0,
∂ψ0

∂ξ
= −2

η

∂φ0

∂η
at ξ = 0 (4.14)

together with the impermeability and no-slip conditions on the particle boundary:

ψ0 = 0,
∂ψ0

∂ξ
= 0 at ξ = 1. (4.15)

A solution of (4.12) which satisfies the far-field decay condition and vanishes at
ξ = 0 is

ψ0 =
η

(η2 + ξ 2)3/2

∫ ∞

0

{[Q(s) + ξR(s)] sinh ξs + ξT (s) cosh ξs} J1(ηs) ds. (4.16)

The coefficients Q, R and T are obtained from the boundary conditions. Thus, the
homogeneous conditions (4.15) give

[Q(s) + R(s)] sinh s + R(s) cosh s = 0, (4.17)

sQ(s) cosh s + sR(s) cosh s + sT (s) sinh s − Q(s) sinh s = 0, (4.18)

while the inhomogeneous slip condition (4.14), in conjunction with the known
properties of the Hankel transform, yields

sQ(s) + T (s) = −2s
d2A

ds2
. (4.19)

Note that at this stage, with A(s) known, (4.17)–(4.19) constitutes a linear algebraic
system for Q, R and T ; the solution of (4.17)–(4.19) is provided in the Appendix.

At large distances from the particle, r → ∞, where both ξ and η are O(1/r), the
integral transform (4.16) becomes

ψ0 ∼ η

(η2 + ξ 2)3/2

[
ηξI (0) + ηξ 2I (1) + ηξ 3I (2) + η3ξI (3) + O(r−5)

]
, (4.20)

wherein

I (0) =
1

2

∫ ∞

0

s[sQ(s) + T (s)] ds, I (1) =
1

2

∫ ∞

0

s2R(s) ds,

I (2) =
1

12

∫ ∞

0

s3[sQ(s) + 3T (s)] ds, I (3) = − 1

16

∫ ∞

0

s3[sQ(s) + T (s)] ds.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.21)

Substitution of (4.17)–(4.19) yields I (0) = 0 and I3 = −π4/120. In addition,
numerical quadrature of (4.21) using (A 1) yields I (1) � −0.84563 and I (2) � 2.808.
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Figure 4. Outer solution near the anode in the meridian plane: electric field lines (thin) and
electro-hydrodynamic streamlines (thick).

Reverting to spherical coordinates yields

ψ0 ∼ 2I (1) cos2 θ sin2 θ

r
+ 4I (2) cos3 θ sin2 θ

r2
+ 4I (3) cos θ sin4 θ

r2
+ O(r−3). (4.22)

Thus, the leading-order velocity decays like 1/r3, just as the electric current
disturbance due to the particle presence. Notice however that the first two terms
in (4.22) do not contribute to the velocity on the electrode (θ = π/2, where r = ρ),
which therefore decays as 1/r4. Indeed, the radial velocity is

− 1

r2 sin θ

∂ψ0

∂θ

∣∣∣∣
θ=π/2

∼ − π4

30r4
+ O(r−5) for r 	 1, (4.23)

in agreement with (2.11) and (3.30). The inward direction of this slip velocity is
consistent with the observed aggregation mechanism.

Using the small-s behaviour of Q, R and T readily provides the singular behaviour
of ψ near the origin, where η → ∞:

ψ0 ∼ −2
ξ (1 − ξ )2

η2
. (4.24)

Comparison with the inner expression (4.11) in conjunction of (4.2) verifies that the
van Dyke 1–1 matching rule is automatically satisfied.

The streamlines associated with the electro-hydrodynamic flow (4.16) in the outer
region are portrayed in figure 4. Also shown are the electric field lines, obtained using
(3.21). Note the similarity of the streamlines to those in figure 4(b) of Ristenpart et al.
(2007a).

5. Flow due to particle-animated slip
Consider now the superimposed effect of a non-zero particle zeta potential, resulting

in the electro-osmotic flow (ũ, p̃). As with the electro-hydrodynamic flow calculation
of the preceding section, the analysis is performed in both the inner and outer regions.
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5.1. Inner region

The scaling (4.1) is re-employed. Thus, the leading-order fields Ũ0, W̃0 and P̃0 are
governed by (4.4)–(4.5). The boundary conditions, however, differ from those in §4.1:
here both Ũ0, W̃0 vanish at Z = 0, while on the particle boundary they satisfy the
conditions (cf. (2.16))

Ũ0 =
dϕ0

dR
at Z = H0 (5.1)

and

W̃0 =
∂ϕ1

∂Z
− 1 at Z = H0. (5.2)

The radial momentum balance in conjunction with (3.13) and (5.1) readily yields
(cf. (4.7))

Ũ0 =
1

2

dP̃0

dR
Z(Z − H0) − RZ

2H 2
0

. (5.3)

Calculation of W̃0 in conjunction with (3.10) and (5.2) shows that P̃0 satisfies (4.8),
whence

P̃0 = P0. (5.4)

The stream function corresponding to the leading-order flow is readily found to be

Ψ̃0 =
R2Z2

2H 3
0

(H0 − Z2). (5.5)

5.2. Outer flow

The stream function ψ̃ is related to ũ through relations of the form (2.18). Thus,
ψ̃ is also governed by (4.12), but now with impermeability and no-slip conditions
on E (whereby both the stream function and its normal derivative vanish there)
together with impermeability and slip conditions on P . Expressed in tangent-sphere
coordinates, the leading-order boundary conditions appear as

ψ̃0 = 0,
∂ψ̃0

∂ξ
= 0 at ξ = 0, (5.6a, b)

and

ψ̃0 = 0,
∂ψ̃0

∂ξ
= − 2η

1 + η2

∂φ0

∂η
− 8η2

(1 + η2)3
at ξ = 1. (5.7a, b)

Just like ψ0, ψ̃0 is governed by (4.12), vanishes at ξ = 0, and is o(1/r2) at large
r . Thus, it possesses the solution (4.16) with Q, R ,and T replaced by different
coefficients, say Q̃, R̃ , and T̃ . This solution automatically satisfies (5.6a), whereas the
remaining homogeneous condition at ξ = 0, (5.6b), adopts the form

sQ̃(s) + T̃ (s) = 0. (5.8)

At ξ = 1, the impermeability condition (5.7a) reads

[Q̃(s) + R̃(s)] sinh s + R̃(s) cosh s = 0, (5.9)

while the inhomogeneous slip condition (5.7b) is readily transformed to the equation

R̃(s) sinh s + sR̃(s) cosh s + sT̃ (s) sinh s = −2s
d2A

ds2
cosh s − 4s

dA

ds
sinh s − 8se−s . (5.10)
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Figure 5. Outer solution near the anode in the meridian plane: electric field lines (thin) and
electro-osmotic streamlines (thick). The flow direction corresponds to a negative particle zeta
potential (χ < 0).

The solution of the linear system (5.8)–(5.10) is provided in the Appendix.
As with the electro-hydrodynamic flow, the solution allows for analytic

approximations at various regions. Thus, at large distances from the particle ψ̃0

is provided by an expression of the form (4.20),

ψ̃0 ∼ η

(η2 + ξ 2)3/2

[
ηξĨ (0) + ηξ 2Ĩ (1) + ηξ 3Ĩ (2) + η3ξĨ (3) + O(r−5)

]
. (5.11)

Here, Ĩ (0), Ĩ (1), Ĩ (2) and Ĩ (3) are provided by relations of the form (4.21), in which
with Q, R and T are replaced by Q̃, R̃ and T̃ . In view of (5.8), both Ĩ (0) and Ĩ (3)

vanish here. Also, numerical quadrature using (A 2) yields

Ĩ (1) � 8.11163, Ĩ (2) � −10.8082. (5.12)

Summarizing, the leading-order outer flow field decays as r−3,

ψ̃0 ∼ 2Ĩ (1) cos2 θ sin2 θ

r
+ 4Ĩ (2) cos3 θ sin2 θ

r2
+ O(r−3), (5.13)

just like that due to the flow associated with electrode-animated slip. Of course, this
flow field vanishes on the electrode, in view of the boundary condition which is
satisfied by ũ there.

The singular behaviour of the outer flow is obtained using the small-s behaviour
of Q̃, R̃ and T̃ , thereby yielding

ψ̃0 ∼ 2
ξ 2(1 − ξ )

η2
. (5.14)

Comparison with (5.5) in conjunction with (4.2) verifies that the van Dyke 1–1
matching rule is automatically satisfied.

The streamlines ψ̃0 = constant, associated with the electro-osmotic flow in the outer
region, are portrayed in figure 5. Also shown are the electric field lines, obtained using
(3.21). Note the similarity of the streamlines to those in figure 4(a) of Ristenpart et al.
(2007a).
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6. Results
With the electric and flow field evaluated, it is now possible to calculate two

quantities which are of interest in understanding the particle clustering phenomena.

6.1. Particle interaction

The velocity field v generated by the particle may be exploited to calculate the
consequent drift of a neighbouring identical particle. The hydrodynamic force acting
on the latter, normalized with 6πμaU , is provided by Faxén’s law (Happel & Brenner
1965):

v +
1

6
∇2v (6.1)

applied at the location of the neighbouring particle centre. To apply this formula, it
is useful to obtain an asymptotic approximation for the flow field near the electrode
at large distances from the particle. This remote region is naturally expressed using
cylindrical coordinates, whereby focus lies in the limit

ρ → ∞ while z = O(1). (6.2)

Note that the previously obtained far-field limit for r → ∞ is not directly applicable
for that purpose, since the asymptotic expansion (4.20) is non-uniform for θ → π/2.
The delicate approach to large distances is evident in the tangent-sphere coordinates
(2.22), wherein (6.2) is transformed to

η = O(ρ−1), ξ = O(ρ−2). (6.3)

Consider first the electro-hydrodynamic flow. Applying the limit (6.3) to the integral
representation (4.16) of ψ0 yields

ψ0 ∼ ξ

η

[
I (0) + I (1)ξ + I (3)η2 + O(ξ 2, η4)

]
. (6.4)

Note the difference with (4.20). Since I (0) = 0, (6.4) provides a single leading-order
term in an asymptotic expansion at inverse powers of ρ, obtained via use of (2.22):

ψ0 ∼ 2I (1)z2 + 4I (3)z

ρ3
+ O(ρ−5). (6.5)

The respective radial velocity component (see (2.17)) is provided using (2.18):

u0 ∼ 4
I (1)z + I (3)

ρ4
+ O(ρ−6). (6.6)

The contribution of the second term in (6.1) in the radial direction is

[
1 + O(ρ−2)

] ∂2u0

∂z2
∼ O(ρ−6). (6.7)

Thus, (6.6) constitutes a leading-order approximation for the radial force on a
neighbouring particle. The velocity component w0 in the z direction, away from
the electrode, is only O(ρ−5).

The preceding analysis also applies for the electro-osmotic flow. Here, because
Ĩ (3) = 0, only one term appears in the leading-order approximation for the radial
velocity

ũ0 ∼ 4Ĩ (1)z

ρ4
+ O(ρ−6). (6.8)
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Figure 6. The ratio −ũ0/u0 at large ρ as a function of distance z from the electrode. The
solid part of the curve represents the relevant z values for the position of a neighbouring
particle. The dashed horizontal line is the large-z asymptote ũ0/u0 = Ĩ (1)/I (1).

This expression vanishes at z = 0, as it must.
The ρ−4 decay rate was actually observed by Ristenpart et al. (2007a), who employed

reflection arguments to explain it (Ristenpart et al. 2007a ,b). Such arguments however
can only provide the behaviour in the limit r → ∞ and are not appropriate to the
limit (6.2). Indeed, the leading-order velocity 6.6 is actually associated with a term
that decays like 1/r3.

The interaction approximations (6.6) and (6.8) allow for a rough comparison
between the electro-hydrodynamic and electro-osmotic contributions to the attractive
force in the radial direction. It is natural to perform this comparison for identical
magnitude of the particle and anode zeta potential. Considering as usual ζP < 0,
this implies χ = − 1. Thus, the relative magnitude of the electro-osmotic contribution
to the force, compared with the respective electro-hydrodynamic contribution, is
provided by the ratio

− ũ0

u0

∼ − Ĩ (1)z

I (1)z + I (3)
, (6.9)

which is portrayed in figure 6 as a function of z. Note that only the values z > 1
are relevant for the location of a neighbouring particle centre. For these values, the
force ratio is larger than unity, implying practical dominance of the electro-osmotic
contribution. If the neighbouring particle is also nearly touching the electrode, whereby
z ≈ 1, the ratio approaches its minimal value −Ĩ (1)/(I (3) + I (1)) � 4.8943. At large
values of z (which must be small compared with ρ), the ratio attains its maximum
asymptotic value −Ĩ (1)/I (1) � 9.5924.

6.2. Levitation mechanism

The other quantity of interest is the force experienced by the particle. In both the
electro-osmotic and electro-hydrodynamic flows the pressure in the gap region is
O(δ−2) large. Since this pressure acts upon an O(δ) area, it results in an O(δ−1)
contribution to the hydrodynamic force. This contribution clearly dominates the
complementary contribution of the outer region, wherein the hydrodynamic stress is
O(1). Thus, the hydrodynamic force (normalized with μaU ) which is contributed by
the superposition of u and χ ũ is approximately given by δ−1F , where F is contributed
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from the inner pressure field. In view of (5.4):

F = 2π(1 + χ)

∫ ∞

0

P0(R)R dR. (6.10)

Substitution of (4.10) readily yields F = 3π(1 + χ).
In addition to the hydrodynamic force, the particle also experiences an electric force,

provided by surface quadrature of Maxwell stresses. These stresses are quadratic in
the electric field and are therefore O(1) in the outer region and O(δ−1) in the inner
one; while still large in the narrow gap, their contribution is subdominant to that
of the pressure forces. Thus, the equilibrium position of the particle is essentially set
up by the balance between the hydrodynamic force and (the difference between the)
gravity and buoyancy forces. In the reported experiments the particle zeta potential
is negative, but is smaller in absolute value from the electrode zeta potential (Fagan
et al. 2004): 0 < 1 + χ < 1. Thus, the main effect of particle charge is to reduce
the repulsive hydrodynamic force. For a freely suspended particle, this results in a
smaller value of δ at the equilibrium position. In view of the δ-dependence of the
hydrodynamic force, this is statically stable equilibrium.

7. Concluding remarks
In summary, this investigation exploited the smallness of the gap width in the

particle–electrode interaction to obtain an asymptotic approximation for the electro-
kinetic processes which occur as a result of a uniform DC ionic current which is
emitted out of the electrode. While the gap smallness has been numerically implicit
in previous analysis of the problem, this is the first time where it is used explicitly.
In my opinion, the present asymptotic approach is not only the conceptually correct
procedure to analyse that problem, but is also the only way that can resolve the
singular gap region. As seen in the previous section, the large pressure field in that
region is actually responsible to the leading-order hydrodynamic force on the particle,
which tends to repel it away from the wall. When Debye layer overlap does occur,
the thin-Debye-layer model is inapplicable in the gap region. In these circumstances,
DLVO forces may actually lead to particle–wall adhesion.

In the outer region, outside the narrow gap, the present analysis provides the
electro-hydrodynamic and electro-osmotic flow components in the form of integral
transforms. Asymptotic approximation of these components at large distance reveals
that the velocity field decays with the third power of that distance. Near the electrode,
however, the velocity decays with the fourth power: this is the mechanism which
leads to effective particle attraction. For equal zeta potentials, it is found that
the electro-osmotic contribution to the attraction dominates the respective electro-
hydrodynamic contribution by a factor which ranges roughly between five and ten.
Conversely, this factor represents the large electrode zeta potential which is required
for comparable contributions. The bipolar-coordinates calculations of Ristenpart et al.
(2007a) were based upon a zeta-potential ratio of about eight; at this large ratio,
both contributions were indeed found comparable (see figure 5 in Ristenpart et al.
2007a). (The large anode-zeta-potential values used in the Ristenpart et al. (2007a)
simulations correspond to (half of) the reported values of applied electrodes voltage
in existing experiments (Solomentsev et al. 2000), thereby neglecting the voltage drop
in the Ohmic bulk.)
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It is worthwhile at this point to emphasize the major approximations in this paper:
(i) the Debye thickness is small compared with the particle–electrode gap, itself small
compared with the particle size; (ii) on the bulk scale, the electrode is equivalent to
a uniformly prescribed surface current; and (iii) the zeta potential on the electrode
is uniform, unaffected by the particle presence. While the first assumption is clearly
supported by typical experimental figures (see table 1), the latter two may constitute
a rather crude approximation. Nevertheless, these two assumptions represent the
state-of-the art modelling in the field.

A more accurate model requires a systematic thin-Debye-layer asymptotic analysis
of electrokinetic phenomena which are driven by ion-exchange surfaces, similar to
the comparable analyses of electrokinetic phenomena in the presence of inert surfaces
(Keh & Anderson 1985; Cox 1997; Yariv 2010). Existing asymptotic analyses of
reactive electrodes that explicitly take into account the electrode kinetics (Rubinstein &
Shtilman 1979; Bazant et al. 2005) tend to focus upon one-dimensional transport
processes. As such, they are inadequate for the present problem. (Clearly, no mass
flow is present in these one-dimensional models.) Because the one-dimensional ionic
transport may be unstable, these models have been generalized to handle three-
dimensional transport processes, whereby electrolyte flow may occur (Rubinstein,
Zaltzman & Kedem 1997; Rubinstein & Zaltzman 2000; Zaltzman & Rubinstein
2007). Nonetheless, these generalized models are unsuitable to handle flow fields
which are imposed by the presence of curved inert surfaces of arbitrary shape (e.g.
the boundary of a colloidal particle).

To be applicable to the present problem, the preceding analyses should be extended
to handle more general (non-one-dimensional) geometries. Such geometries constitute
a conceptual difficulty as compared to the one-dimensional analyses. Consider indeed
the pertinent length scales involved: The one-dimensional geometries are characterized
by two length scales: λ, the Debye thickness and h, the electrode spacing; inspection
of more general geometry, on the other hand, introduces two more length scales: a,
a characteristic particle size and aδ, particle–electrode separation. While the analysis
of such a multi-scale problem appears formidable, it could possibly be carried out
using the inherent scale disparity in the problem. If succeeded, it can extract the
desired macro-scale electrode model from the microscale physics, relating the current-
density and zeta-potential distributions on the anode to the experimental controlled
problem inputs: the electrodes voltage, the electrode kinetics and the dimensions of
the electro-chemical cell.

Appendix. Solutions of linear systems
The solution of (4.17)–(4.19) is

Q = − 32e4ss2(2s + e2s(2s − 3) + 3)

(e2s − 1)3(e4s − 2e2s(2s2 + 1) + 1)
,

R = −8e2ss(e6s(2s − 3) + e2s(3 − 8s2 − 14s) + e4s(3 − 8s2 + 14s) − 2s − 3)

(e2s − 1)3(e4s − 2e2s(2s2 + 1) + 1)
,

T =
8e2ss(2s + e2s(2s − 3) + 3)

(e2s − 1)(e4s − 2e2s(2s2 + 1) + 1)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 1)
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The solution of (5.8)–(5.10) is

Q̃ =
4s(2s csch2s − 3 coth s)

2s2 − cosh 2s + 1
,

R̃ = −2s csch3s(s cosh s − sinh s)(3 sinh 2s − 4s)

2s2 − cosh 2s + 1
,

T̃ =
4s2(3 coth s − 2s csch2s)

2s2 − cosh 2s + 1
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 2)
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